Sunday, March 22, 2020

Production of Acetone from isopropyl alcohol

Introduction Acetone is one of the most widely used solvents in the world and can be used as an intermediate for several commercial products such as acrylic plastic, bisphenol, polycarbonates and epoxy resin, paints, and adhesives among others. According to Tremoulet et al. (Para 2), Acetone is often a by-product of phenol, with scientists capable of producing acetone from a variety of materials including propylene, cumene, and isopropanol.Advertising We will write a custom report sample on Production of Acetone from isopropyl alcohol specifically for you for only $16.05 $11/page Learn More In industrial production acetone is an organic compound with a chemical formula of (CH3)2CO. Tremoulet et al. affirm that during production of cumene, â€Å"hydro peroxide generated from this process undergoes slicing to engender phenol and acetone† (Para 2). Where scientists require a high concentration of high-purity acetone, they can undertake Catalytic dehy drogenation of isopropanol as a substitute method to manufacturing acetone. As a fresh engineer and based on knowledge in chemical engineering, this paper seeks to design an acetone plant that produces 50 thousand tons per year from isopropyl alcohol. Problem Statement For several decades, scientists have consistently tried to incorporate knowledge to individuals on how to produce simple acetone, with the importance of acetone becoming widely known. A research documented by Rahman indicates, â€Å"The catalytic hydrogenation of acetone is an important area of catalytic process to produce fine chemicals† (113). The fine chemicals are useful since the form key element in the conversion of liquid or gaseous fuels as well as having important application in the heat pumps. Typically, scientists have developed vast number of homogeneous complexes and heterogeneous catalysts that have existed until the date for the production fine chemicals, with little knowledge existing in the pro duction of acetone using isopropyl alcohol (IARC 479). For this reason therefore, this paper seeks to provide a comprehensive report on the chemical production of acetone using isopropyl alcohol as the main material. Physical properties of all components Acetone is an organic compound having several physical properties during the entire process of production. Following the procedure in the production of acetone, the several materials emerge during and after the production. To begin with, in the feed drum there are normally three materials in this mixture.Advertising Looking for report on chemistry? Let's see if we can help you! Get your first paper with 15% OFF Learn More The mixtures found in the feed drum as described in the production process entail recycle stream, water, and isopropyl alcohol. This mixture has a number of physical properties noted as colourless, moveable, with mildly pungent smell and liquid in nature (IARC 481). The mixture goes through all other procedures including processes in the vaporizer, heater and reactor the mixture maintains similar physical characteristics. However, flammability of the mixture is eminent throughout the process and engineers should take caution during the chemical production of acetone. In the final process, the mixture produces acetone, as the final product and this liquid possesses characteristics such as colorlessness, mobility, flammability, and pungency in its smell. Production process and alternative processes In the process of producing acetone-using isopropyl alcohol, several processes are inclusive in this procedure. Since the advent of discovery of production of acetone, several Chemical Engineering processes and procedures have emerged with a range of materials proving imperative. As mentioned before, acetone can result from the chemical reaction of several materials. Laboratory production of Acetone can use isopropyl alcohol as the reactant; can use oxidation of Propylene process, oxida tion of Butanol, oxidation of Isopropyl Benzene as well as Dehydrogenation of Isopropanol (Arda et al. 8). During the production or engineering process of acetone, all chemical reactions involved are essential to produce fine acetone, which is useful commonly as a solvent. To understand the chemical production of acetone, this study provides the entire engineering process of acetone from isopropyl alcohol using â€Å"feed drum, vaporizer, heater, reactor, furnace, cooler, condenser, flash unit, scrubber, acetone and IPA columns† (Arda et al. 10). The study will also provide a diagrammatic presentation of the process. Production process In common processes, original invention of acetone instigates in the feed drum where mixing of feed including isopropyl alcohol, water, and recycle stream takes place. Vigorous mixing of these feeds (components) leads to a substantial reaction. From the feed drum, the mixture goes to another important stage, where the vaporizer provides room fo r further chemical reaction (Arda et al. 11).Advertising We will write a custom report sample on Production of Acetone from isopropyl alcohol specifically for you for only $16.05 $11/page Learn More The mixture in the vaporizer changes the streams phase into vapor. After undergoing the necessary procedures required in the vaporizer, the mixture undergoes another important phase in the heater. In the heater chamber, the mixture undergoes vigorous heating to enhance reaction through subjecting the mixture to higher temperatures. Reactor is another important section, where this section provides tubular flow reaction. In the reactor, the process is capable of achieving two products namely, Acetone, hydrogen gas, while isopropyl and water undergo discharging. A concentrated mixture comprising of hydrogen, water, acetone, and isopropyl-alcohol proceeds to the cooler and then further to the condenser unit before it proceeds to the flash unit. In the flash unit Hydrogen, acetone, isopropyl-alcohol and water form the top product. The top product comprising of acetone proceeds to another important procedure in the scrubber. In the scrubber chamber, the main purpose is to separate hydrogen gas from the mixture. Thereafter, the bottom product produced in the flash unit comprising of water, isopropyl alcohol, and acetone is mixed with the bottom product from the scrubber in the acetone column. In the acetone column, the reaction produces acetone from the top product with almost 99-wtpercentage isopropyl and water (Arda et al. 7). 0.1% of acetone then proceeds to isopropyl alcohol column from the bottom product. Finally, the top product of the isopropyl column is taken to the feed drum. The remaining part of mixture (residue) found, popularly referred as bottom product, remains as dissipate of the reaction. The following is the general formulae for the reactions in the production of acetone using isopropyl alcohol. Advertising Looking for report on chemistry? Let's see if we can help you! Get your first paper with 15% OFF Learn More The production of acetone Discussion of the production process In the feed drum: A feed is a tank like object used in the mixing of the recycle stream and the feed stream. The mixture ran at a temperature of 25 Degrees Celsius in the feed stream, which the engineers assumed it was constant. The temperature in the recycle stream used was about 110 degrees Celsius. In the vaporizer: to reduce the chemical reaction speed necessary in the fine production acetone, it was important to consider the use of salt. Engineers used similar temperature of the mixture leaving the feed drum to maintain the reaction in the vaporizer. The mixture undergoes several chemical reactions to produce the product known as acetone. Kinetic data of the reactions During the chemical production process of acetone energy consumption and the rate of consumption are important factors considered in a bid to obtain fine acetone. This report adopted the kinetic energy data provided by (Arda et al. 15) to explain the e nergy consumption of the process. This part covered energy data consumed in the Feed Drum, where the process begins to the isopropyl-alcohol column, where the process ends. Other related processes (Chemical processes) Oxidation of Propylene-as postulated before, several other processes can be useful in production of acetone. Production of acetone can involve oxidation of Propylene. In normal occasions, a process for production of acetone by direct oxidation of propylene, involves the oxidation process by air. The process principally involves a solution of copper chloride with small quantities of palladium chloride mixed in the air to produce acetone. Chemical formulae: C3H6 + 1/2O2 —–CH3COCH3 Oxidation of Butanol- chemical engineers can as well produce acetone from a process of oxidation of Butanol. Rahman asserts, â€Å"The solvent used methanol, ethanol, propanol; n-butanol, ethylene glycol; propylene glycol, diethylene glycol, and triethylene glycol are useful solvents for hydrogenation reactions† (120). According to Arda et al., catalytic oxidation of butane by using cobalt and manganese acetate produces acetic acid under a temperature rate of 150-225 degrees Celsius, where butane undergoes oxidation to produce acetone of almost 75-80% yield (18). Chemical formulae: CH3CH2CH2CH2CH3 + O2——-CH3COOH + CH3COCH Oxidation of Isopropyl Benzene (Cumene) – Cumene is an organic compound produced from an integrated process of producing phenol. Production of phenol further involves, â€Å"alkylation of benzene with propene to obtain cumene, oxidation of cumene to cumene hydro peroxide, acid cleavage of cumene hydro peroxide to produce phenol and acetone† (Rahman 114). According to the explanation given by Arda et al. (21), cumene is simply a product obtained from synthesis of propylene and benzene and oxidation of the product to produce acetone and phenol. Dehydrogenation of Isopropanol- Another important method of obtaining acetone is dehydrogenation of Isopropanol. Rahman postulates, â€Å"Isopropanol is widely regarded as an essential commodity in fine chemical synthesis which is used as a solvent in the industry and academia† (113). Normally, hydrogenation of acetone leads to production of Isopropanol, and the vice versa is that dehydrogenation of Isopropanol produces acetone. The catalyst used in this process is Zinc Oxide (ZnO) (IARC 483). The following is the chemical formulae for dehydrogenation of Isopropanol. Chemical formulae: (CH3)2CHOH ——(CH3)3CO + H2 Safety and environment concerns It is important to consider personal health and environmental safety concerns while undertaking chemical production of acetone. Acetone is a chemical like any other and there are possibilities of causing harm to human beings, animals and the entire flora and fauna (Tremoulet et al. Para 6). All chemicals used in the production of acetone comprise of some caution notices, which engi neers of acetone should follow strictly to avoid explosive reactions. In special attention, engineers should ensure that they prevent contamination of soil, drains and surface water. According to Arda et al. (17), engineers interested in the production of acetone should strictly adhere to all industrial principles governing the production and consumption of chemicals including handling and storing of hazardous chemicals. Acetone forms explosive mixtures with air and is extremely explosive and users of this chemical should remain keen throughout. Engineers should address any accidental inhalation or suffocation and any accidental cases with any first aid before considering seeking health assistance from physicians. Preliminary cost of the materials For engineers to engage in the production of acetone, it is imperative to consider the preliminary cost of production. However, the cost of producing acetone depends entirely on the amount of acetone produced. The major aim of preferring t o produce more attractive and affordable acetone in the market was to employ the use of isopropyl alcohol in producing acetone (Rahman 118). The production of acetone using isopropyl alcohol must be in a position to demonstrate the aspect of saving. Several materials and chemicals were useful and mandatory for the successful production of acetone. In a bid to determine the overall production cost of acetone for this project, this study employed a program costing technique known as CAPCOST to estimate the price of equipment employed. The following table provides a detailed cost data for the production of acetone of this study as adopted from an empirical study by Tremoulet et al. Total Production cost for acetone using isopropyl alcohol Item description Cost of the item Reactor Bare Module $204,300 Heat Exchanger Bare Module $96,500 Fired Heater Bare Module $234,200 Pump Bare Module $73,100 Vessel Bare Module $9,600 Bare Module Cost of Reaction Side $617,700 Catalyst $68,200 Total $496,100 Summary of the literature review Acetone is an organic compound produced using different chemical methods. However, this study dealt with the chemical production of acetone using isopropyl alcohol, which is an essential component in the production of acetone. Acetone is one of the most widely used solvents in the world and can be used as intermediate for several commercial products such as acrylic plastic, bisphenol, polycarbonates and epoxy resin, paints and adhesives, etc. In other places, acetone has been useful in nurturing women beauty, where women have used acetone in removing nail cuticles (Tremoulet et al. Para 7). Acetone is often a by-product of phenol, with scientists capable of producing acetone from a variety of materials including propylene, cumene, and isopropanol. Acetone production involves several chemical and physical processes including heating, vaporizing, reacting, cooling, condensing, flashing, heating and scrubbing. Production of acetone begins in the feed drum and ends in the isopropyl column where acetone finally emerges. One chemical formula can be useful in summarizing the process of producing acetone. CH3-CHOH-CH3 CH3-CO-CH3 + H2 can summarize the chemical reaction process in the production of acetone. It is also important to notice that production of acetone is a very reactive process that needs consideration of safety and environmental concern. All chemicals used in the production of acetone comprise of some caution notices, which engineers of acetone should follow strictly to avoid explosive reactions. Acetone forms explosive mixtures with air and is extremely explosive and users of this chemical should remain keen throughout. Finally, engineers should address any accidental inhalation or suffocation and any accidental cases with any first aid before considering seeking health assistance from physicians. Works Cited Arda, Urun, Serkan Acarser, Muge Metin, Sila Gungor, and Ali Kucuk. Chemical Engineer ing Design Project: Acetone Production, 2009. Web. IARC. Isopropyl Alcohol Manufacture by the Strong-Acid Process. PDF file. Web. Rahman, Ateeq. â€Å"Catalytic Hydrogenation of Acetone to Isopropanol: An Environmentally Benign Approach.† Bulletin of Chemical Reaction Engineering Catalysis 5.2 (2010): 113 – 126. Print. Tremoulet Mike, Mike Unton, and Ed Feng. Production of Acetone Using Catalytic Dehydrogenation of Isopropyl Alcohol, 1998. Web. This report on Production of Acetone from isopropyl alcohol was written and submitted by user Jillian Farmer to help you with your own studies. You are free to use it for research and reference purposes in order to write your own paper; however, you must cite it accordingly. You can donate your paper here.

Thursday, March 5, 2020

Definition and Examples of Dynamic Verbs

Definition and Examples of Dynamic Verbs In English grammar, a dynamic verb is a  verb used primarily to indicate an action, process, or sensation as opposed to a state. Also called an action verb or an event verb. Also known as  a  non-stative verb or  action verb.  Contrast with stative verb. There are three major types of dynamic verbs: 1) accomplishment verbs (expressing action that has a logical endpoint), 2) achievement verbs (expressing action that occurs instantaneously), and 3) activity verbs (expressing action that can go on for an indefinite period of time). Examples and Observations They throw the ball, I hit it.They hit the ball, I catch it.(Hall of Fame baseball player Willie Mays)He had learned to walk and run and fight in the twisting alleys and dirty gutters of Rome.(Howard Fast, Spartacus. Blue Heron Press, 1951)I ate a banana and drank a glass of nonfat chocolate milk for breakfast. After that, I washed the breakfast dishes with liquid soap and lemon juice. I threw them in the dish drainer so they could dry naturally and left the house.(Lori Aurelia Williams, Broken China. Simon Schuster, 2006)They roared and clapped, sang and shouted as I performed, and with each moment my heart filled fuller.(Emmanuel Jal, War Child: A Child Soldiers Story. St. Martins Griffin, 2010)America is a large, friendly dog in a very small room. Every time it wags its tail, it knocks over a chair.(Arnold Toynbee, BBC news summary, July 14, 1954)[I]n summer everything fills. The day itself widens and stretches almost around the clock; these are very high latitudes, higher than L abradors. You want to run all night. Summer people move into the houses that had stood empty, unseen, and unnoticed all winter. The gulls scream all day and smash cockles; by August they are bringing the kids.(Annie Dillard, Mirages, 1982) Brandt ran back to the deepest corner of the outfield grass, the ball descended beyond his reach and struck in the crotch where the bullpen met the wall, bounced chunkily, and vanished.(John Updike, Hub Fans Bid Kid Adieu, 1960)Verbs act. Verbs move. Verbs do. Verbs strike, soothe, grin, cry, exasperate, decline, fly, hurt, and heal. Verbs make writing go, and they matter more to our language than any other part of speech.(Donald Hall and Sven Birkerts, Writing Well, 9th ed. Longman, 1997) Whats the Difference Between a Dynamic Verb and a Stative Verb? A dynamic verb (such as  run, ride, grow, throw) is primarily used to indicate an action, process, or sensation. In contrast, a stative verb (such as be, have, seem, know) is primarily used to describe a state or situation. (Because the boundary between dynamic and stative verbs can be fuzzy, its generally more useful to talk of dynamic and stative meaning and usage.) Three Classes of Dynamic Verbs If a​  clause can be used to answer the question What happened?, it contains a non-stative (dynamic) verb. If a clause cannot be so used, it contains a stative verb. . . . It is now accepted practice to divide dynamic verbs into three classes. . . . Activity, accomplishment and achievement verbs all denote events. Activities denote events with no built-in boundary and stretching out over time. Achievements denote events conceived of as occupying no time at all. Accomplishments denote events with an activity phase and a closure phase; they can be spread out over time, but there is a built-in boundary.(Jim Miller, An Introduction to English Syntax. Edinburgh University  Press, 2002)